Abstract

The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm 2 (130 fs) up to ∼1500 mJ/cm 2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.