Abstract

In magnetoelectric and multiferroic materials, the magnetic degree of freedom can be controlled by electric field, and vice versa. A significant amount of research has been devoted to exploiting this effect for magnetoelectric data storage and manipulation devices driven by d.c. electric fields1–4. Aiming at ever-faster schemes of magnetoelectric manipulation, a promising alternative approach offers similar control on a femtosecond timescale, relying on laser pulses4–6 to control both the charge7,8 and the magnetic9,10 order of solids. Here we photo-induce magnetoelectricity and multiferroicity in CuB2O4 on a sub-picosecond timescale. This process is triggered by the resonant optical generation of the highest-energy magnetic excitations—magnons with wavevectors near the edges of the Brillouin zone. The most striking consequence of the photo-excitation is that the absorption of light becomes non-reciprocal, which means that the material exhibits a different transparency for two opposite directions of propagation of light. The photo-induced magnetoelectricity does not show any decay on the picosecond timescale. Our findings uncover a path for ultrafast manipulations of the intrinsic coupling between charges and spins in multiferroics 4 , which may reveal unexplored magnetic configurations and unravel new functionalities in terms of femtosecond optical control of magnetism. Pump–probe measurements of CuB2O4 reveal non-reciprocal directional dichroism, demonstrating the possibility to optically induce magnetoelectricity in a material on a femtosecond timescale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.