Abstract
Deepwater Horizon spilled over 200 million gallons of oil into the waters of the Gulf of Mexico in 2010. In an effort to contain the spill, chemical dispersants were applied to minimize the amount of oil reaching coastal shorelines. However, the biological impacts of chemically-dispersed oil are not well characterized, and there is a particular lack of knowledge concerning sublethal long-term effects of exposure. This study examined potential estrogenic effects of CWAF, Corexit 9500-enhanced water-accommodated fraction of oil, by examining its effect on estrogen receptors and sex determination in the American alligator, Alligator mississippiensis. The alligator exhibits temperature-dependent sex determination which is modulated by estrogen signals, and exposure to 17β-estradiol (E2) and estrogenic compounds in ovo during the thermosensitive period of embryonic development can induce ovarian development at a male-producing temperature (MPT). CWAF induced transactivation up to 50% of the maximum induction by E2 via alligator estrogen receptors in vitro. To determine potential endocrine-disrupting effects of exposure directly on the gonad, gonad-adrenal-mesonephric (GAM) organ complexes were isolated from embryos one day prior to the thermosensitive period and exposed to E2, CWAF, or medium alone in vitro for 8–16 days at MPT. Both CWAF and E2 exposure induced a significant increase in female ratios. CWAF exposure suppressed GAM mRNA abundances of anti-Müllerian hormone (AMH), sex determining region Y-box 9, and aromatase, whereas E2 exposure suppressed AMH and increased Forkhead box protein L2 mRNA abundances in GAM. These results indicate that the observed endocrine-disrupting effects of CWAF are not solely estrogenically mediated, and further investigations are required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have