Abstract

Experimental exposures aimed at assessing the risks posed by estrogens in waste-water treatment work (WwTW) effluents to fish populations have rarely considered whether populations differ in their sensitivity to estrogenic compounds. This is despite evidence that selection at genes involved in the estrogen response has occurred in wild populations, and evidence that genotype can influence estrogen-response. In this study we compare the effects of a two-year exposure to a low measured concentration (1.3 ng/L) of ethinylestradiol (EE2) on the sexual development of roach (Rutilus rutilus) whose parental generation was sampled from two river stretches heavily contaminated with WwTW effluent and from two without any known WwTW effluent contamination. Exposure to EE2 significantly reduced the proportion of genetic males and induced a range of feminized phenotypes in males. Significantly, exposure also increased the proportion of genetic females with vitellogenic oocytes from 51 to 96%, raising the possibility that estrogen pollution could impact populations of annually spawning fish species through advancing female reproduction by at least a year. However, there was no evidence that river origin affected sensitivity to estrogens in either sex. Thus, we conclude that chronic exposure to low level EE2 has reproductive health outcomes for both male and female roach, but we find no evidence that the nature or magnitude of the response is affected by the population origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.