Abstract
Members of the LCCL/lectin adhesive-like protein (LAP) family, a family of six putative secreted proteins with predicted adhesive extracellular domains, have all been detected in the sexual and sporogonic stages of Plasmodium and have previously been predicted to play a role in parasite–mosquito interactions and/or immunomodulation. In this study we have investigated the function of PbLAP1, 2, 4, and 6. Through phenotypic analysis of Plasmodium berghei loss-of-function mutants, we have demonstrated that PbLAP2, 4, and 6, as previously shown for PbLAP1, are critical for oocyst maturation and sporozoite formation, and essential for transmission from mosquitoes to mice. Sporozoite formation was rescued by a genetic cross with wild-type parasites, which results in the production of heterokaryotic polyploid ookinetes and oocysts, and ultimately infective Δpblap sporozoites, but not if the individual Δpblap parasite lines were crossed amongst each other. Genetic crosses with female-deficient (Δpbs47) and male-deficient (Δpbs48/45) parasites show that the lethal phenotype is only rescued when the wild-type pblap gene is inherited from a female gametocyte, thus explaining the failure to rescue in the crosses between different Δpblap parasite lines. We conclude that the functions of PbLAPs1, 2, 4, and 6 are critical prior to the expression of the male-derived gene after microgametogenesis, fertilization, and meiosis, possibly in the gametocyte-to-ookinete period of differentiation. The phenotypes detectable by cytological methods in the oocyst some 10 d after the critical period of activity suggests key roles of the LAPs or LAP-dependent processes in the regulation of the cell cycle, possibly in the regulation of cytoplasm-to-nuclear ratio, and, importantly, in the events of cytokinesis at sporozoite formation. This phenotype is not seen in the other dividing forms of the mutant parasite lines in the liver and blood stages.
Highlights
Transmission of the malarial parasite Plasmodium from the vertebrate host to the mosquito vector requires rapid sexual development within the mosquito midgut, which is triggered upon ingestion of male and female gametocytes by the mosquito during a blood meal
Following fertilization between male and female gametes in the blood meal, zygotes develop into motile ookinetes that, 24 hours later, cross the mosquito midgut epithelium and encyst on the midgut wall
A protein family implicated in the interactions between parasites and mosquitoes is the LCCL/lectin adhesive-like protein (LAP) family
Summary
Transmission of the malarial parasite Plasmodium from the vertebrate host to the mosquito vector requires rapid sexual development within the mosquito midgut, which is triggered upon ingestion of male and female gametocytes by the mosquito during a blood meal. Zygotes immediately undergo meiosis and differentiate within 24 h into motile, invasive ookinetes. The ookinetes cross the mosquito midgut epithelium and differentiate beneath the basal lamina into oocysts, where circa 11 rounds of endomitosis give rise to up to circa 8,000 haploid nuclei. Sexual development and midgut invasion represent a major natural population bottleneck in the Plasmodium life cycle [1], during which the parasite is critically dependent on intercellular interactions, both between parasite cells (e.g., at fertilization) and between parasite and host. A protein family implicated in these interactions, based on its expression profile and the presence of signal peptides and predicted adhesive extracellular domains, is the Limulus clotting factor C, Coch-5b2, and Lgl (LCCL)/lectin adhesive-like protein (LAP) family ( referred to as the CCp family; see Table S1)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have