Abstract

Factors related to pollen and resource limitation were evaluated to predict female fruit production in a tropical dioecious tree. Pollen limitation via variation in the male density at local scales is expected to limit female reproduction success in dioecious plants. We modeled the roles of local male density, female crown size, crown illumination, and female flower production on female fruit initiation and mature fruit production in a continuous population (62 ha plot) of a tropical dioecious tree (Virola surinamensis). In addition, we used microsatellites to describe the scale of effective pollen flow, the male effective population size, and the spatial genetic structure within/between progenies and males. The local male density was not related to female fruit initiation or mature fruit production. Female floral production had a positive effect on fruit initiation. The female crown size was positively related to fruit maturation. Seeds from the same female and seeds from different but spatially proximal females were generally half-siblings; however, proximal females showed greater variation. Proximal male-female adult pairs were not significantly more genetically related than distant pairs. The probability of paternity was negatively affected by the distance between seeds and males; most effective pollen dispersal events (∼85%) occurred from males located less than 150 m from females. The number of males siring progenies was greater than the number of males found at local scales. Female fecundity in this continuous population of Virola surinamensis is not limited by the availability of pollen from proximal males. Rather, resource allocation to floral production may ultimately determine female reproductive success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call