Abstract

Due to the rear-face steel plate of the steel plate concrete wall (SC) is very effective in preventing the perforation and scabbing of concrete, in order to resist the impact of commercial aircraft crash, steel plate concrete structures are usually used in the design of external walls of nuclear power plants. In this paper, the simulation analysis of the impact test of 1/7.5 scaled aircraft model impacting the steel plated concrete panels is carried out by using finite element code ANSYS/LS-DYNA. The Winfrith material model (*MAT_84) in ANSYS/LS-DYNA is used to simulate the concrete. The damage profile of panels and residual velocity of aircraft engine comparisons between the simulations and tests are presented in this paper. The results indicate that the damage modes from the impact simulations are very good agreement with the experimental result. It is verified that not only the selection of the material parameters needed for the steel plated concrete wall and aircraft model but also the entire analysis method was appropriate and effective. This paper provided the effective methodology for simulation of the response of the steel plated concrete structure of nuclear power plant due to commercial aircraft crash impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call