Abstract

Autonomous exploration in robotics is a crucial feature to achieve robust and safe systems capable to interact with and recognize their surrounding environment. In this paper, we present a method for object recognition using a three-fingered robotic hand actively exploring interesting object locations to reduce uncertainty. We present a novel probabilistic perception approach with a Bayesian formulation to iteratively accumulate evidence from robot touch. Exploration of better locations for perception is performed by familiarity and novelty exploration behaviors, which intelligently control the robot hand to move toward locations with low and high levels of interestingness, respectively. These are active behaviors that, similar to the exploratory procedures observed in humans, allow robots to autonomously explore locations they believe that contain interesting information for recognition. Active behaviors are validated with object recognition experiments in both offline and real-time modes. Furthermore, the effects of inhibiting the active behaviors are analyzed with a passive exploration strategy. The results from the experiments demonstrate the accuracy of our proposed methods, but also their benefits for active robot control to intelligently explore and interact with the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.