Abstract

We present an investigation on active control for intelligent object exploration using touch with a robotic hand. First, uncertainty from the exploration is reduced by a probabilistic method based on the accumulation of evidence through the interaction with an object of interest. Second, an intrinsic motivation approach allows the robot hand to perform intelligent active control of movements to explore interesting locations of the object. Passive and active perception and exploration were implemented in simulated and real environments to compare their benefits in accuracy and reaction time. The validation of the proposed method were performed with an object recognition task, using a robotic platform composed by a three-fingered robotic hand and a robot table. The results demonstrate that our method permits the robotic hand to achieve high accuracy for object recognition with low impact on the reaction time required to perform the task. These benefits make our method suitable for perception and exploration in autonomous robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.