Abstract
This article presents a novel approach to leverage generative adversarial networks(GANs) techniques to learn a feedback linearization controller(FLC) for a class of uncertain nonlinear systems. By estimating uncertainty through the adversarial process, where ground truth samples are exclusively obtained from a predefined integral model, the feedback linearization controller, learned through a minimax two-player optimization framework, enhances the reference tracking performance of the input-output uncertain nonlinear system. Furthermore, we provide theoretical guarantee of convergence and stability, demonstrating the safe recovery of robust FLC. We also address the common challenge of mode collapse in GANs training through the strict convexity of our synthesized generator structure and an enhanced adversarial loss. Comprehensive simulations and practical experiments are conducted to underscore the superiority and efficacy of our proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.