Abstract

The occurrence of high-frequency (>1000 Hz) thermoacoustic instability (TAI) sustained by mutual feedback among the acoustic field, heat release rate oscillations, and hydrodynamic oscillations poses severe challenges to the operation and structural integrity of rocket engines. Hence, quantifying the differing levels of feedback between these variables can help uncover the underlying mechanisms behind such high-frequency TAI, enabling redesign of combustors to mitigate TAI. However, so far, no concrete method exists to decipher the varying levels of mutual feedback during high-frequency TAI. In the present study, we holistically investigate the mutual influence based on the spatiotemporal directionality among acoustic pressure, heat release rate, and hydrodynamic and thermal oscillations during TAI of a single-element rocket engine combustor. Using symbolic transfer entropy, we identify the spatiotemporal direction of feedback interactions between those primary variables when acoustic waves significantly emerge during TAI. We unveil the influence of vorticity dynamics at the fuel collar (or the propellant splitter plate) as the primary stimulant over the heat release rate fluctuations to rapidly amplify the amplitude of the acoustic field. Furthermore, depending on the quantification of the degree of the mutual information (i.e., the net direction of information), we identify the switches in dominating the thermoacoustic driving between the variables during TAI, each representing a distinct mechanism of a thermoacoustic state. Additionally, from this quantification, we analyze the relative dominance of the variables and rank-order the mutual feedback according to their impact on driving TAI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.