Abstract

The rise in the dimension and complexity of information generated in the clinical field has motivated research on the automation of tasks in personalized healthcare. Recommendation systems are a filtering method that utilizes patterns and data relationships to generate items of interest for a particular user. In healthcare, these systems can be used to potentiate physical therapy by providing the user with specific exercises for rehabilitation, albeit facing issues pertaining to low accuracy in earlier iterations (cold-start) and a lack of gradual optimization. In this study, we propose a physical activity recommendation system that utilizes a K-nearest neighbor (KNN) sampling strategy and feedback collection modules to improve the adequacy of recommendations at different stages of a rehabilitation period when compared to traditional collaborative filtering (CF) or human-constrained methods. The results from a trial show significant improvements in the quality of initial recommendations, achieving 81.2% accuracy before optimization. Moreover, the introduction of short-term adjustments based on frequent player feedback can be an efficient manner of improving recommendation accuracy over time, achieving overall better convergence periods than those of human-based systems, topping at a measured 98.1% accuracy at K = 7 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call