Abstract

We perform a stationary state replica analysis for a layered network of Ising spin neurons, with recurrent Hebbian interactions within each layer, in combination with strictly feed-forward Hebbian interactions between successive layers. This model interpolates between the fully recurrent and symmetric attractor network studied by Amit el al, and the strictly feed-forward attractor network studied by Domany et al. Due to the absence of detailed balance, it is as yet solvable only in the zero temperature limit. The built-in competition between two qualitatively different modes of operation, feed-forward (ergodic within layers) versus recurrent (non- ergodic within layers), is found to induce interesting phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.