Abstract

With the maturity of artificial intelligence (AI) technology, applications of AI in edge computing will greatly promote the development of industrial technology. However, the existing studies on the edge computing framework for the Industrial Internet of Things (IIoT) still face several challenges, such as deep hardware and software coupling, diverse protocols, difficult deployment of AI models, insufficient computing capabilities of edge devices, and sensitivity to delay and energy consumption. To solve the above problems, this paper proposes a software-defined AI-oriented three-layer IIoT edge computing framework and presents the design and implementation of an AI-oriented edge computing system, aiming to support device access, enable the acceptance and deployment of AI models from the cloud, and allow the whole process from data acquisition to model training to be completed at the edge. In addition, this paper proposes a time series-based method for device selection and computation offloading in the federated learning process, which selectively offloads the tasks of inefficient nodes to the edge computing center to reduce the training delay and energy consumption. Finally, experiments carried out to verify the feasibility and effectiveness of the proposed method are reported. The model training time with the proposed method is generally 30% to 50% less than that with the random device selection method, and the training energy consumption under the proposed method is generally 35% to 55% less.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.