Abstract
Standard machine-learning approaches involve the centralization of training data in a data center, where centralized machine-learning algorithms can be applied for data analysis and inference. However, due to privacy restrictions and limited communication resources in wireless networks, it is often undesirable or impractical for the devices to transmit data to parameter sever. One approach to mitigate these problems is federated learning (FL), which enables the devices to train a common machine learning model without data sharing and transmission. This paper provides a comprehensive overview of FL applications for envisioned sixth generation (6G) wireless networks. In particular, the essential requirements for applying FL to wireless communications are first described. Then potential FL applications in wireless communications are detailed. The main problems and challenges associated with such applications are discussed. Finally, a comprehensive FL implementation for wireless communications is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.