Abstract
AbstractIn order to meet the extremely heterogeneous requirements of the next generation wireless communication networks, research community is increasingly dependent on using machine‐learning solutions for real‐time decision‐making and radio resource management. Traditional machine learning employs fully centralized architecture in which the entire training data is collected at one node for example, cloud server, that significantly increases the communication overheads and also raises severe privacy concerns. Toward this end, a distributed machine‐learning paradigm termed as federated learning (FL) has been proposed recently. In FL, each participating edge device trains its local model by using its own training data. Then, via the wireless channels the weights or parameters of the locally trained models are sent to the central parameter server (PS), that aggregates them and updates the global model. On one hand, FL plays an important role for optimizing the resources of wireless communication networks, on the other hand, wireless communications is crucial for FL. Thus, a “bidirectional” relationship exists between FL and wireless communications. Although FL is an emerging concept, many publications have already been published in the domain of FL and its applications for next generation wireless networks. Nevertheless, we noticed that none of the works have highlighted the bidirectional relationship between FL and wireless communications. Therefore, the purpose of this survey article is to bridge this gap in literature by providing a timely and comprehensive discussion on the interdependency between FL and wireless communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions on Emerging Telecommunications Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.