Abstract

Computer-aided diagnosis (CAD) has always been an important research topic for applying artificial intelligence in smart healthcare. Sufficient medical data are one of the most critical factors in CAD research. However, medical data are usually obtained in chronological order and cannot be collected all at once, which poses difficulties for the application of deep learning technology in the medical field. The traditional batch learning method consumes considerable time and space resources for real-time medical data, and the incremental learning method often leads to catastrophic forgetting. To solve these problems, we propose a real-time medical data processing method based on federated learning. We divide the process into the model stage and the exemplar stage. In the model stage, we use the federated learning method to fuse the old and new models to mitigate the catastrophic forgetting problem of the new model. In the exemplar stage, we use the most representative exemplars selected from the old data to help the new model review the old knowledge, which further mitigates the catastrophic forgetting problem of the new model. We use this method to conduct experiments on a simulated medical real-time data stream. The experimental results show that our method can learn a disease diagnosis model from a continuous medical real-time data stream. As the amount of data increases, the performance of the disease diagnosis model continues to improve, and the catastrophic forgetting problem has been effectively mitigated. Compared with the traditional batch learning method, our method can significantly save time and space resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call