Abstract

The promising areas of application of spodumene–containing glass–crystalline materials in various branches of science and technology, in particular, to increase the defense capability of the state, have been determined. The relevance of the development of lightweight high–strength sitalls based on them, taking into account the aspects of energy saving for obtaining armored elements, has been determined. It has been established that the use of IR spectroscopy is promising for studying the nanostructure of glass–crystalline materials. The compositions of lithium aluminum silicate glasses and the modes of their heat treatment have been developed. The features of the structure formation of spodumene–containing glass–crystalline materials obtained under the conditions of two–stage low–temperature heat treatment have been investigated. Taking into account the analysis of the nature of the IR spectra of chain silicates, the structure of glass–crystalline materials was investigated according to the IR spectra and the nature of structure formation was established depending on the initial composition of the glass. It has been established that the formation of a structural glass network with the participation of tetrahedra [AlO4], [BO4] and [SiO4] and the presence of cybotaxic groups [Si2O6] allows, under conditions of two–stage low–temperature treatment, to provide bulk crystallization of spodumene–containing glass–crystalline materials. It has been established that the formation of the vitrified structure of glass–crystalline materials allows to ensure their high values of Vickers hardness, microhardness and crack resistance and by the presence of a glass phase, which plays the role of a damper, to ensure their high armor resistance. This will increase the efficiency and make it possible to use them as an energy–destructive and energy–absorbing layer in the composition of the armor element «metal alloy – ceramics – sitall». The introduction of spodumene–containing glass–crystalline materials will increase the competitiveness of competitive domestic armored elements for personal protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.