Abstract

In the highly-correlated electron system Sr1-xNdxMnO3 (SNMO) having the simple perovskite structure, there are interesting electronic states, which are related to degrees of charge, orbital, and spin freedoms for eg electrons in Mn ions. Among these states, in the case of SNMO, the C-, A-and CE-type antiferromagnetic states were reported for 0.20 ≤ x ≤ 0.38, for 0.38 ≤ x ≤ 0.48, and for 0.48 ≤ x ≤ 0.52, respectively. The points to note here are that these antiferromagnetic states are directly associated with corresponding orbital orderings, and that the CE-type state also accompanies charge ordering. Because of these features, we were interested in the (A → CE) state change in SNMO. The crystallographic features of prepared SNMO samples with 0.46 ≤ x ≤ 0.50 have thus been investigated mainly by means of a transmission electron microscope equipped with a low-temperature holder. As a result, the state around 100 K for x = 0.48 was first understood to be identified as the Imma state, which includes a large number of orbital-modulated (OM) regions with an average size of about 10 nm. The feature of such regions is that the orbital modulation has an incommensurate periodicity and a charge modulation is absent in them. On the other hand, the CE-type state having the commensurate orbital and charge modulations was also confirmed to be present for x = 0.50. In addition to these two states, the state around 100 K for x = 0.46 was found to be characterized by the coexistence state consisting of the C-type orbital-ordered state and the Imma states including OM regions. In other words, the presence of the A-type orbital-ordered state could not be confirmed in the temperature range between 300 K and about 100 K for 0.46 ≤ x ≤ 0.50 in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call