Abstract

A set of nonlinear evolution equations describing the dynamics of atoms, molecules, and photons in the course of stimulated atomic—molecular conversion in a Bose—Einstein condensate is derived and studied in the mean-field approximation. It is shown that conversion can be periodic or aperiodic in time, the rate of the process being determined to a considerable extent by the initial density of particles and by the initial phase difference. Depending on the initial conditions, various conversion modes can be realized. The possibility of stabilization of a special state (of rest) of the system for nonzero initial number densities of particles is predicted. It is pointed out that coherence of a Bose condensate of atoms, molecules, and photons predetermines the possibility of phase control of the conversion process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call