Abstract
ABSTRACT In the present paper, new results using in situ video are presented regarding boiling water reactor (BWR) control blade degradation up to 1750 K at the beginning of a nuclear severe accident. Energy-dispersive X-ray spectrometry (EDS) mapping indicated stratification of the absorber blade melt with formation of a chromium and boride-enriched layer. High-content-B- and C-containing material with increased melting temperature acted like a shielding and was found to prevent further relocation of control blade claddings. The interacted layers around the B4C-granules prevented direct steam attack of residual B4C. The results provide new insights for understanding of the absorber blade degradation mechanism under reducing conditions specific to Fukushima Dai-Ichi Unit 2 resulting from prolonged steam starvation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have