Abstract

Electroencephalography (EEG) is a highly complex and non-stationary signal that reflects the cortical electric activity. Feature selection and analysis of EEG for various purposes, such as epileptic seizure detection, are highly in demand. This paper presents an approach to enhance classification performance by selecting discriminative features from a combined feature set consisting of frequency domain and entropy based features. For each EEG channel, nine different features are extracted, including six sub-band spectral powers and three entropy values (sample, permutation and spectral entropy). Features are then ranked across all channels using F-statistic values and selected for SVM classification. Experimentation using CHB-MIT dataset shows that our method achieves average sensitivity, specificity and F-1 score of 92.63%, 99.72% and 91.21%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.