Abstract

We have developed a semiempirical feature scale model of Si etching in SF6∕O2 plasma. The kinetic parameters in the model are determined by matching simulated profiles with experimentally observed feature profiles obtained at various pressures, rf-bias voltages, and O2 mole fraction in the feed gas. The model parameters are further constrained by using information about the relative radical concentrations, ion flux, and ion energy obtained from plasma diagnostics. Excellent agreement between experiments and simulations is obtained. The combined experimental and simulation study reveals that chemical etching in the lateral direction is significantly reduced through competitive adsorption of O on the feature sidewalls and subsequent formation of a fluorinated oxide layer that passivates the sidewalls. The flux of F and SFx radicals is focused toward the feature bottom due to increased neutral reflection off the passivated sidewalls. The net result is enhanced etching in the vertical direction and improved feature anisotropy with decreasing F-to-O ratio (increasing O2 fraction). However, too much O2 addition eventually leads to the slowing down of the vertical etch rate as O adsorption on active surface sites dominates even at the feature bottom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.