Abstract
In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grained information may include redundancies. In addition, current methods lack an effective scheme to remove background interference. Therefore, this paper proposes the feature refinement and filter network to solve the above problems from three aspects: first, by weakening the high response features, we aim to identify highly valuable features and extract the complete features of persons, thereby enhancing the robustness of the model; second, by positioning and intercepting the high response areas of persons, we eliminate the interference arising from background information and strengthen the response of the model to the complete features of persons; finally, valuable fine-grained features are selected using a multi-branch attention network for person re-identification to enhance the performance of the model. Our extensive experiments on the benchmark Market-1501, DukeMTMC-reID, CUHK03 and MSMT17 person re-identification datasets demonstrate that the performance of our method is comparable to that of state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.