Abstract

Recent advancements in shrink-wrapping-based mesh approximation have shown tremendous advantages for non-manifold defective meshes. However, these methods perform unsatisfactorily when maintaining the regions with sharp features and rich details of the input mesh. We propose an adaptive shrink-wrapping method based on the recent Alpha Wrapping technique, offering improved feature preservation while handling defective inputs. The proposed approach comprises three main steps. First, we compute a new sizing field with the capability to assess the discretization density of non-manifold defective meshes. Then, we generate a mesh feature skeleton by projecting input feature lines onto the offset surface, ensuring the preservation of sharp features. Finally, an adaptive wrapping approach based on normal projection is applied to preserve the regions with sharp features and rich details simultaneously. By conducting experimental tests on various datasets including Thingi10k, ABC, and GrabCAD, we demonstrate that our method exhibits significant improvements in mesh fidelity compared to the Alpha Wrapping method, while maintaining the advantage of manifold property inherited from shrink-wrapping methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call