Abstract

Adhesive bonding is widely used in aerospace composite structures. A continuous well-cured bond can offer good joint strength and improved fatigue and impact resistance, and is therefore crucial to the performance of the entire structure. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of the bond line between a stiffener and a carbon fiber reinforced polymer (CFRP) composite panel. Such FGWs are capable of focusing the wave energy along the stiffener and the bond layer, with limited radiation to the adjacent plate. The Semi-Analytical Finite Element (SAFE) approach is employed to understand the modal properties of FGWs that exist in the structure, and criteria are suggested to choose proper mode-frequency combination that is sensitive to adhesive defects. A shear horizontal type FGW mode is identified to be well suited, as it is easy to excite, and propagates with little dispersion and relatively low attenuation, while it retains sufficient energy around the bond layer. Both 3D Finite Element (FE) simulations and experiments are performed to study the interaction of the selected FGW mode with defects in the adhesive bond, and the results show excellent agreement. The reflection behavior and the wave-defect resonance phenomenon are investigated, which demonstrate the capability of the FGW for the bond line inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.