Abstract
Erosion-corrosion is a problematic damage mechanism for the oil and gas industry. To manage the risk of erosion-corrosion networks of particle impact monitoring systems have been installed on pipelines in order to detect acoustic emission from abrasive sand particles impacting the inside surface of the pipe. It would be of value if the existing network of particle impact monitoring systems were not only capable of detecting particle impact, but also sizing the remaining wall thickness. Particle impact monitoring systems are passive and are not generally equipped for excitation. This paper explores the feasibility of using passive acoustic emission transducers for wall thickness measurement, utilizing the fact that active pulse-echo measurements can be approximated by autocorrelating diffuse acoustic waves, such as those generated by particle impact. Two measurement modalities are presented: a) time-of-flight measurements and b) resonant ultrasound spectroscopy measurements. The more usual time-of-flight based measurement is limited by the fact that acoustic emission transducers typically have sensitive bandwidths limited to <1 MHz. The relatively low frequency operation limits the use to thick wall components where the component thickness ≫ ultrasonic wavelength. In thinner walled components a resonant ultrasound spectroscopy approach is required. Experimental measurements are shown that are truly passive (with no purposeful excitation at all), and semi-passive, utilizing acoustic emission from sand impact or compressed air as the excitation source. Results show very good agreement with active measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.