Abstract

In most complex classification problems, many types of features have been captured or extracted. Feature fusion is used to combine features for better classification and to reduce data dimensionality. Kernel-based feature fusion methods are very effective for classification, but they do not reduce data dimensionality. In this brief, we propose an effective feature fusion method using locally linear embedding (LLE). The proposed method overcomes the limitations of LLE, which could not handle different types of features and is inefficient for classification. We propose an efficient algorithm to solve the optimization problem in obtaining weights of different features, and design an efficient method for LLE-based classification. In comparison to other kernel-based feature fusion methods, the proposed method fuses features to a significantly lower dimensional feature space with the same discriminant power. We have conducted experiments to demonstrate the effectiveness of the proposed feature fusion method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.