Abstract

Accurate decoding finger motor imagery is essential for fine motor control using EEG signals. However, decoding finger motor imagery is particularly challenging compared with ordinary motor imagery. This paper proposed a novel EEG decoding method of featuredependent frequency band selection, feature fusion, and ensemble learning (DSFE) for finger motor imagery. First, a feature-dependent frequency band selection method based on correlation coefficient (FDCC) was proposed to select feature-specific effective bands. Second, a feature fusion method was proposed to fuse different types of candidate features to produce multiple refined sets of decoding features. Finally, an ensemble model using the weighted voting strategy was proposed to make full use of these diverse sets of final features. The results on a public EEG dataset of five fingers motor imagery showed that the DSFE method is effective and achieves the highest decoding accuracy of 50.64%, which is 7.64% higher than existing studies using exactly the same data. The experiments further revealed that both the effective frequency bands of different subjects and the effective frequency bands of different types of features are different in finger motor imagery. Furthermore, compared with two-hand motor imagery, the effective decoding information of finger motor imagery is transferred to the lower frequency. The idea and findings in this paper provide a valuable perspective for understanding fine motor imagery in-depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call