Abstract
A new video based recognition method is presented to recognize non-cooperating individuals at a distance in video, who expose side views to the camera. Information from two biometric sources, side face and gait, is utilized and integrated at feature level. For face, a high-resolution side face image is constructed from multiple video frames. For gait, Gait Energy Image (GEI), a spatio-temporal compact representation of gait in video, is used to characterize human walking properties. Face features and gait features are obtained separately using Principal Component Analysis (PCA) and Multiple Discriminant Analysis (MDA) combined method from the high-resolution side face image and Gait Energy Image (GEI), respectively. The system is tested on a database of video sequences corresponding to 46 people. The results showed that the integrated face and gait features carry the most discriminating power compared to any individual biometric.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have