Abstract
The problem of detecting local image features that are invariant to scale, orientation, illumination and viewpoint changes is a critical issue in many computer vision applications. The challenges involve localizing the image features accurately in the spatial and frequency domains and describing them with a stable analytical representation. In this paper we address these two issues by proposing a new non-linear scale-space implementation that improves the localization accuracy of the SIFT [3] local features. Furthermore we propose a simple adjustment to the standard SIFT descriptor and show that the modified version is more robust to affine changes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have