Abstract

Poly-γ-glutamic acid (PGA) was modified with phosphorylating agents such as sodium metaphosphate and potassium metaphosphate in the culture medium of Bacillus subtilis (natto). The highly phosphorylated PGA derivatives were prepared and investigated for their chemical and physicochemical properties. The PGA derivatives had approximately 7% (W/W) inorganic phosphorus and characteristic absorbance PO2− bands at 1082cm−1 and 1260cm−1 by Fourier Transform Infrared Spectroscopy. The derivative modified by sodium metaphosphate (J-5) was easily hydrated in water and had extremely low viscosity. The shear rate-induced transition leading to the decrease of viscosity was not observed in J-5 whereas the derivative modified by potassium metaphosphate (J-6) as well as unmodified PGA (J-1) showed the typical decrease of viscosity. In circular dichroism (CD) measurement of J-5, there was a significant loss of the negative chirality CD signal, implying that protein aggregation occured at decreasing pH from 6.2 to 4.4. The thioflavin T fluorescence intensity of the aqueous solution in the J-5 was extremely high despite the absence of heat-treatment. The results indicate that the J-5 is the likeliest type of aggregation by β-sheet cross-linking which is relevant to protein diseases like Alzheimer’s disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.