Abstract

A stochastic algorithm for obtaining feasible initial populations to the Vehicle Routing Problem with Time Windows is presented. The theoretical formulation for the Vehicle Routing Problem with Time Windows is explained. The proposed method is primarily divided into a clustering algorithm and a two-phase algorithm. The first step is the application of a modifiedk-means clustering algorithm which is proposed in this paper. The two-phase algorithm evaluates a partial solution to transform it into a feasible individual. The two-phase algorithm consists of a hybridization of four kinds of insertions which interact randomly to obtain feasible individuals. It has been proven that different kinds of insertions impact the diversity among individuals in initial populations, which is crucial for population-based algorithm behavior. A modification to the Hamming distance method is applied to the populations generated for the Vehicle Routing Problem with Time Windows to evaluate their diversity. Experimental tests were performed based on the Solomon benchmarking. Experimental results show that the proposed method facilitates generation of highly diverse populations, which vary according to the type and distribution of the instances.

Highlights

  • The Routing Problem is one of the most important and widely studied combinatorial problems focused on distribution, logistics, and transportation systems

  • Experimental testing was performed by evaluating each of the five chosen insertion heuristics separately

  • A modified k-means algorithm was applied to the Vehicle Routing Problem with Time Windows (VRPTW), where only the capacity constraints were taken into account

Read more

Summary

Introduction

The Routing Problem is one of the most important and widely studied combinatorial problems focused on distribution, logistics, and transportation systems. It is important to note that there is great variation in real problems. Each company has a different problem with specific features that makes it unique. According to its importance and hardness, several variants of the Routing Problem have been proposed to provide approaches for more realistic problems. Variants of the Routing Problem are defined by theoretical mathematical models that focus on general problems with specific features. Due to its high complexity and similarities with real problems, the Vehicle Routing Problem with Time Windows (VRPTW) is one of the most studied models

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.