Abstract
A composite made of polyacrylic acid and hollow TiO2 spheres (TiO2@PPAA) was prepared by the plasma polymerization method and subsequently used as an electrode material for detecting lysozyme. The chemical structure, surface morphology, and electrochemical performance of the TiO2@PPAA composite were mainly affected by the plasma input power used during plasma polymerization. After optimizing plasma conditions, aptamer strands exhibited high adsorption affinity toward the surface of TiO2@PPAA composite via synergistic effects between TiO2 and PPAA. Electrochemical impedance spectroscopy results showed that the developed TiO2@PPAA aptasensor presents highly sensitive detection ability toward lysozyme; the limit of detection of the proposed aptasensor is 0.015 ng mL(-1) (1.04 pM) within the range of 0.05-100 ng mL(-1) in terms of 3σ value. The film further showed excellent selectivity toward lysozyme in the presence of interfering proteins, such as thrombin, bovine serum albumin, and immunoglobulin E. Thus, this aptasensing strategy might broaden the applications of plasma polymerized nanomaterials in the field of biomedical research and early clinical diagnosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have