Abstract

As an important part of urban greening, the canopy of street trees has ecological benefits, such as oxygen production, noise reduction, and dust reduction. The living vegetation volume (LVV) can reflect the spatial structure of the canopy intuitively and enables the estimation of the ecological service value of street trees. Terrestrial laser scanning (TLS) has shown excellent performance for providing three-dimensional data of individual trees with high precision, enabling the accurate quantification of the LVV. In this study, we divided the LVV into the total living vegetation volume (tLVV) and the effective living vegetation volume (eLVV); the latter does not include branches. The eLVV of 40 ginkgo trees separated in two roads in Nanjing was calculated from TLS data. A novel method named LAIM for accurate eLVV calculation based on point cloud data was proposed. The point cloud data of individual tree was segmented along the Z-axis and image processing methods were used. With this, eLVV of each tree was obtained. The results were compared with data obtained from a clustered point cloud generated using convex hulls. The Bland-Altman analysis was used to investigate the consistency of the two methods. Furthermore, we used correlation analysis and all-subsets regression to choose the variables, and the eLVV was fitted using six models. Finally, we evaluated O2 production, CO2 and SO2 absorption by the street trees based on eLVV, the ecological benefits of street trees were quantified. The results showed the following: (1) The number of layers and the dilation size of the point cloud were crucial parameters in the LAIM. (2) For ginkgo trees, the mean difference between the eLVV obtained from the LAIM and the convex hull method was − 0.53–0.19 m3, indicating that the results were highly consistent for the two methods. (3) The eLVV fitting performance was better for the exponential function model (R2 =0.8523, RMSE=0.6838 m3) and linear model (R2 =0.8361, RMSE=0.7224 m3). The tree height and crown width significantly affected the eLVV estimation. (4) The evaluation about ecological benefits of Zhaoyang Road was better than Cuizhu Road. The quantified ecological benefits were conducive to road ecological evaluation. This study quantified the eLVV of individual trees using TLS, highlighting the importance of live vegetation in urban greening. The results can provide technical support for estimating the ecological service value of urban street trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.