Abstract
A new design activity for an advanced reactor, referred to as a naturally safe high temperature gas-cooled reactor (NSHTR), has been launched by authors after the accident at the Fukushima Daiichi Nuclear Power Station. The concept of NSHTR is that the release of radioactive materials is kept at very low level and no harmful effect on people and the environment is ensured by only physical phenomena even in the absence of engineered safety features. At an air ingress accident, possible physical events that lead to the loss or degradation of the confinement function of the fuel-coating layers are the crack of the coatings caused by the explosion of carbon monoxide (CO) produced by the graphite oxidation and failure of the coatings by melting or sublimation caused by core heat up due to the reaction heat of the graphite oxidation. In this study, the CO concentration and the heat generated by graphite oxidation inside the circular tube were evaluated parametrically using a steady-state one-dimensional model to confirm the feasibility of NSHTR at a severe condition of the air ingress accident (i.e., a massive air ingress by simultaneous rupture of two primary pipes). It was confirmed that the CO concentration at the outlet of coolant channel can be maintained below the explosion limit due to the reaction with oxygen in the air, and the reaction heat can be removed with the decay heat by physical phenomena under certain conditions of the coolant channel geometry without any engineered safety features. The results revealed that the design of NSHTR is technically feasible in terms of the suppression of the CO explosion and the heat removal of the reaction heat at the air ingress accident.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.