Abstract

Superconducting magnetic energy storage (SMES) devices of several tens of kJ class are generally suitable for voltage compensation for microgrids, which produce and distribute electric power to restricted areas. MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> material has been developed with superconducting properties by decreasing the production cost. Since hydrogen energy would be widely utilized to realize society with low carbon emission and stored in liquid state for reducing its volume, the power distribution system consisting of MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> SMES for compensation of voltage fluctuations cooled by the liquid hydrogen would be effective by synergy effect. However, the MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> introduction to large-scale devices is still not enough and under investigation. Our group carried out the investigations to develop MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> cable and pancake coil for the SMES device with specific capacity. The bending strain-sensitive characteristic of MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> material forces us to design the twisted conductors and pancake coils with various parameters properly within its tolerable bending strains of both before/after heat treatment. The conductor design for small pancake coils and large SMES coils is shown in this research, as well as the demonstration results of a small test coil fabricated as a prototype of SMES coil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.