Abstract

We explore the potential use of radar technology for fiducial marker tracking for monitoring of respiratory tumor motion during radiotherapy. Historically microwave radar technology has been widely deployed in various military and civil aviation applications to provide detection, position, and tracking of single or multiples objects from far away and even through barriers. Recently, due to many advantages of the microwave technology, it has been successfully demonstrated to detect breast tumor, and to monitor vital signs in real time such as breathing signals or heart rates. We demonstrate a proof-of-concept for radar-based fiducial marker tracking through the synthetic human tissue phantom. We performed a series of experiments with the vector network analyzer (VNA) and wideband directional horn antenna. We considered the frequency range from 2.0 to 6.0GHz, with a maximum power of 3dBm. A horn antenna, transmitting and receiving radar pulses, was connected to the vector network analyzer to probe a gold fiducial marker through a customized synthetic human tissue phantom, consisting of 1-mm thickness of skin, 5-mm fat, and 25-mm muscle layers. A 1.2 × 10-mm gold fiducial marker was exploited as a motion surrogate, which was placed behind the phantom and statically positioned with an increment of 12.7mm to simulate different marker displacements. The returned signals from the marker were acquired and analyzed to evaluate the localization accuracy as a function of the marker position. The fiducial marker was successfully localized at various measurement positions through a simplified phantom study. The averaged localization accuracy across measurements was 3.5 ± 1.3mm, with a minimum error of 1.9mm at the closest measurement location and a maximum error of 4.9mm at the largest measurement location. We demonstrated that the 2-6GHz radar can penetrate through the attenuating tissues and localize a fiducial marker. This successful feasibility study establishes a foundation for further investigation of radar technology as a non-ionizing tumor localization device for radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.