Abstract
Pulse arrival time (PAT) and pulse transit time (PTT) derived from the finger have been widely investigated for noninvasive blood pressure (BP) measurement. The study investigates the feasibility of BP measurement using a chestworn patch sensor derived systolic timing intervals and pulse timing measurements. Healthy volunteers (N=14, 38 ± 13 years) carried out a protocol including deep breathing test, sustained hand grip test and modified Valsalva test with continuous physiological measurements from a patch sensor attached on left chest and intermittent BP measurements from an automated oscillometric monitor as a reference. The efficacy of chest derived PAT and PTT for univariate BP prediction is assessed using correlation and regression slope. The cross validation performance of predicting BP using multivariate regression model with chest derived systolic timing intervals and pulse timing features were also evaluated. The results suggest that the chest derived PAT and PTT had modest correlations (-0.52 and -0.31) and regression slopes (-0.21 and -0.14) with automated oscillometric systolic and diastolic BP references, respectively. On the other hand, a multivariate regression approach for prediction of mean blood pressure (MBP) using patch sensor measurements showed a correlation of 0.72, mean error of 0.1 mmHg and RMSE error of 5.1 mmHg compared to the oscillometric MBP values. The study demonstrated the feasibility of BP measurement using a wearable chest-worn patch sensor in healthy control subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.