Abstract

Previously, high resolution MRI to assess bone structure of deep-seated regions of the skeleton such as the proximal femur was substantially limited by signal-to-noise ratio (SNR). With the advent of new optimized pulse sequences in MRI at 1.5 T and 3 T, it may now be possible to depict and quantify the trabecular microarchitecture in the proximal femur. The purpose of this study was to investigate the feasibility of assessing trabecular microstructure of the human proximal femur in vivo with MR imaging at 1.5 T and 3 T. MR images of six young, healthy male and female subjects were acquired using standard clinical 1.5-T and high-field 3-T whole-body MR scanners. Using a T2/T1-weighted 3D FIESTA sequence (and a 3D FIESTA-C sequence at 3 T to avoid susceptibility artifacts) a resolution of 0.234 x 0.234 x 1.5 mm(3) was achieved in vivo. Structural parameters analogous to standard bone histomorphometry were determined in femoral head and trochanter regions of interest. Bone mineral density (BMD) measurements were also obtained using dual-energy X-ray absorptiometry (DXA) for the femoral trochanter in the same subjects. The bone structure of the proximal femur is substantially better depicted at 3 T than at 1.5 T. Correlation between the structural parameters obtained at both field strengths was up to R =0.86 for both the femoral head and the trochanteric region. However, the resolution of the images limits the application of 3D structural analysis, making the assessment more akin to 2D textural measures, which may be correlated to histomorphometric but are not identical measures. This feasibility study establishes the potential of MRI as a means of imaging proximal femur structure, and improvements in technique and resolution enhancements are warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.