Abstract

The interstitial cells of Cajal (ICC) initiate, coordinate and propagate bioelectrical slow wave activity that drives gastric motility. In the healthy human stomach, slow wave activity is highly organized. Gastric motility disorders are associated with dysrhythmias. While ablation is widely used to treat cardiac dysrhythmias, this approach has yet to be trialed in the stomach. In this study, radiofrequency (RF) ablation was applied in pig stomachs in vivo to create targeted electrical conduction blocks. Ablations were performed at temperature control mode (55-70°C), and resultant conduction blocks were identified and verified using high-resolution electrical mapping. Termination of slow wave propagation at ablation sites was confirmed by a decrease in extracellular slow wave amplitude from 1.7 ± 0.2 mV to an undetectable amplitude, as well as spatiotemporal pattern analysis of conduction blocks. The use of high-resolution electrical mapping can now be employed to investigate ablation as a potential therapy for gastric dysrhythmias in motility disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.