Abstract

The use of a hemispherical tool tilted towards the retreating side for friction stir welding 6061-T6 aluminum alloy is investigated. Joints with smooth surfaces and without internal voids are obtained. Under the same welding and rotational speeds, adapting the tilt angle makes it possible to weld various thicknesses up to 3.5 mm. Plunge depth and tilt angle are demonstrated to be key geometrical parameters driving material flow when using the hemispherical tool. Microstructural features in the weld are equiaxed and refined grains below 5 µm in the stirred zone and narrow thermo-mechanical affected zones. The through-thickness thermomechanical gradient developing beneath the hemispherical tool leads to different extents of dynamic recrystallization and recovery in the stirred zone. The tool orientation towards the retreating side and the division of the tool-workpiece interaction in continuous and intermittent contact leads to an asymmetrical thermal field around the stirred zone. Hence, the new derivative friction stir welding solution allows the welding of multiple aluminum alloy blank thicknesses using the same tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.