Abstract

Solar pond undoubtedly has been a reliable source of low grade heat supply by acting as both collector and storage for the incoming solar radiation. The thermal efficiency of the solar ponds is between 15 and 25% of the incoming horizontal solar radiation. Meanwhile, the thermoelectric technology enables the conversion of heat into electricity using thermoelectric modules. In this paper, the feasibility of the system by combining solar pond and thermoelectric modules is presented. This system can be achieved by using a thermoelectric modules-embedded heat exchanger module that will able to extract the heat available from the lower convective zone of the solar pond. The analysis in this paper was conducted by investigating the solar ponds operating in different climate conditions, which are Group A (Kuala Lumpur), Group B (Riyadh) and Group C (Melbourne and Granada) base on Köppen climate classification. The theoretical feasibility draws the limit on the performance and cost of the solar pond-thermoelectric system under commercially available thermoelectric technology at the present state. Later, the result was contrasted against the performance of the power generation units operate under realisable operating condition with solar pond. The result in this study revealed that, under ideal condition, the system is at least 10 times costly compared to other renewable energy sources like off-grid solar photovoltaic system with storage. Meanwhile, at its best operating climate, this system will be able to achieve annual carbon dioxide reduction of 2.38kg/m2-year in a practical case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.