Abstract
EIT has been proposed for acute stroke differentiation, specifically to determine the type of stroke, either ischaemia (clot) or haemorrhage (bleed) to allow the rapid use of clot-busting drugs in the former (Romsauerova et al 2006) . This addresses an important medical need, although there is little treatment offered in the case of haemorrhage. Also the demands on EIT are high with usually no availability to take a 'before' measurement, ruling out time difference imaging. Recently a new treatment option for haemorrhage has been proposed and is being studied in international randomised controlled trial: the early reduction of elevated blood pressure to attenuate the haematoma. This has been shown via CT to reduce bleeds by up to 1mL by Anderson et al 2008. The use of EIT as a continuous measure is desirable here to monitor the effect of blood pressure reduction. A 1mL increase of haemorrhagic lesion located near scalp on the right side of head caused a boundary voltage change of less than 0.05% at 50 kHz. This could be visually observed in a time difference 3D reconstruction with no change in electrode positions, mesh, background conductivity or drift when baseline noise was less than 0.005% but not when noise was increased to 0.01%. This useful result informs us that the EIT system must have noise of less than 0.005% at 50 kHz including instrumentation, physiological and other biases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.