Abstract

To investigate changes in image and dynamic signal-to-noise ratios (SNRs) of the DeltaR2* curve, as well as magnetic susceptibility-induced artifacts between a standard quadrature head coil and an eight-channel phased-array coil with and without sensitivity-encoding (SENSE) at 3T, compared to the current clinical standard head coil acquisition at 1.5T. Dynamic susceptibility contrast (DSC) perfusion MRI was performed on 80 brain tumor patients using a gradient-echo, echo-planar imaging (EPI) sequence. Image and dynamic SNR were compared between 1.5T and 3T field strengths, a quadrature and eight-channel phased-array coil, and a conventional vs. partially parallel EPI acquisition with SENSE reconstruction. The amount of geometric distortion and signal dropout was quantified and compared between conventional and SENSE EPI acquisitions within the same exam at 3T. An initial 2.6-fold elevation in dynamic SNR was observed in normal-appearing white matter when doubling the field strength (P < 0.001), with an additional 1.7-fold increase found when employing an eight-channel phased-array coil (P < 0.002). Compared to the standard 3T eight-channel coil acquisition, the implementation of SENSE reduced the number of voxels experiencing large anterior shifts in the phase-encode direction, lowered the volume of signal dropout by 2.0-11.5%, and allowed a 1.4-fold increase in slice coverage, while only decreasing the dynamic SNR by 22%. SENSE EPI at 3T yielded a significant improvement in dynamic SNR over the 1.5T acquisitions. A significant reduction in magnetic susceptibility-induced artifacts was achieved with SENSE EPI compared to the standard EPI eight-channel coil acquisition at 3T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call