Abstract
To investigate the feasibility of differential geometry features in the detection of anatomical feature points on a patient surface in infrared-ray-based range images in image-guided radiation therapy. The key technology was to reconstruct the patient surface in the range image, i.e., point distribution with three-dimensional coordinates, and characterize the geometrical shape at every point based on curvature features. The region of interest on the range image was extracted by using a template matching technique, and the range image was processed for reducing temporal and spatial noise. Next, a mathematical smooth surface of the patient was reconstructed from the range image by using a non-uniform rational B-splines model. The feature points were detected based on curvature features computed on the reconstructed surface. The framework was tested on range images acquired by a time-of-flight (TOF) camera and a Kinect sensor for two surface (texture) types of head phantoms A and B that had different anatomical geometries. The detection accuracy was evaluated by measuring the residual error, i.e., the mean of minimum Euclidean distances (MMED) between reference (ground truth) and detected feature points on convex and concave regions. The MMEDs obtained using convex feature points for range images of the translated and rotated phantom A were [Formula: see text] and [Formula: see text], respectively, using the TOF camera. For the phantom B, the MMEDs of the convex and concave feature points were [Formula: see text] and [Formula: see text]mm, respectively, using the Kinect sensor. There was a statistically significant difference in the decreased MMED for convex feature points compared with concave feature points [Formula: see text]. The proposed framework has demonstrated the feasibility of differential geometry features for the detection of anatomical feature points on a patient surface in range image-guided radiation therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.