Abstract

With the rise of renewable energy resources, especially offshore wind power plant, the DC transmission concept has attracted more and more attention. The selection of eco-friendly insulating gas, as most critical insulating part of gas-insulated equipment is top priority for developing highly reliable system. Moreover, it is acknowledged that eco-friendly C3F7CN/CO2 gas mixtures have become a potential alternative to SF6 gas due to its excellent performance. This study reviews the basic physical properties of C3F7CN gas/gas mixtures and insulation properties including the gas gap breakdown and surface flashover performance at DC, as well as lightning impulse voltage. Investigation about the gas stability is presented, including the compatibility of gas with solid materials in gas-insulated transmission line (GIL), and the decomposition characteristics under long-term electrical and thermal stresses. The important progress on the charge accumulation characteristics of gas–solid interface in the novel gas environment under DC voltage stress is analysed. Finally, the key issues that need to be paid attention to and further followed through regarding the application of this novel gas in GIL are summarised and put forward. This study hopefully can provide a complete reference for the development of eco-friendly DC gas insulation equipment with C3F7CN/CO2 gas mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.