Abstract
The aim of this work was to non-invasively establish the feasibility of assessing 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) lung metabolism with the use of a late dynamic positron emission tomograpy (PET) acquisition, i.e., beyond 2h after injection. The present method has been probed in 11 patients without any respiratory disease, under fasting conditions, by assessing mean values of (18)F-FDG lung metabolism. A kinetic model analysis has been implemented on a simple calculation sheet. An arbitrary (population based) input function has been used in each individual, which was obtained from literature data. In the healthy lung, no (18)F-FDG release was found, and the mean values (±SD) of the (18)F-FDG uptake rate constant and of the fraction of the free tracer in blood and interstitial volume were: K = 0.0016min(-1) (±0.0005), and F = 0.18 (±0.10), respectively. These results were in very close agreement with literature data that were obtained by both three-compartment model analysis and Patlak graphical analysis (gold standards), and that used an invasive blood sampling. Furthermore, K and the standard uptake value index have been compared. We conclude that assessing lung metabolism of (18)F-FDG in humans with the use of late dynamic PET imaging is feasible. The arbitrary input function of this non-invasive feasibility study could be replaced in further experiments by an input function obtained by arterial sampling. It is suggested that this method may prove useful to quantify (18)F-FDG lung metabolism under pathological conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have