Abstract

The present paper analyzes the feasibility of an exhaust gas driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines in addition to the conventional charge air cooler to increase the engine efficiency. Thereto, steady-state experiments of a jet-ejector cooling system and an exhaust gas heat exchanger prototype working with the refrigerant R134a are used to analyze the operation and control of the compound system and determine feasible cooling capacities, charge air temperatures, thermal COPth and hydraulic COPh. Moreover, the cooling system is rated regarding its power densities and engine backpressure. The exhaust gas waste heat recovery, system power densities, and engine backpressure are acceptable. However, the hydraulic COPh and the amount of reject heat need to be improved, necessitating for instance a multi-staging of the jet-ejection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.