Abstract

We report on the successful growth of single crystals of Fe2+:CdSe by seeded physical vapor transport (SPVT) technique with doping within the growing process and subsequent annealing in Se vapor. Luminescence lifetime measurements, spectroscopic studies of 5E–5T2 transition of Fe2+ in CdSe, and laser experiments were performed. The lifetime of the 5T2 energy level was measured to be 20 ± 5 ns at a room temperature (RT) of 290 K. At liquid nitrogen (LN) temperature, luminescence kinetics displayed a non-exponential decay, which can be fitted to a bi-exponential function with time constants τ1 = 6 µs and τ2 = 29 µs. As much as 3.2 mJ of output energy at 5.2 µm with 27% absorbed pump energy slope efficiency of an Fe2+:CdSe laser was achieved at RT under 2.94 µm nanosecond Er:YAG laser pumping. The Fe2+:CdSe laser was tuned from 4.63 to 6.10 µm. Obtained characteristics of Fe2+:CdSe indicate that the crystal can be considered a promising medium for amplification of femtosecond pulses in the middle infrared range up to 6 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.